public final class TaylorSeries
extends java.lang.Object
| Modifier and Type | Field and Description | 
|---|---|
static double | 
FIVE_OVER_112
Constant value equal to 3/40. 
 | 
static double | 
HALF
Constant value equal to 1/2. 
 | 
static double | 
ONE_OVER_120
Constant value equal to 1/120 = 1/5!. 
 | 
static double | 
ONE_OVER_24
Constant value equal to 1/24 = 1/4!. 
 | 
static double | 
ONE_OVER_5040
Constant value equal to 1/5040 = 1/7!. 
 | 
static double | 
ONE_OVER_720
Constant value equal to 1/720 = 1/6!. 
 | 
static double | 
ONE_SIXTH
Constant value equal to 1/6 = 1/6. 
 | 
static double | 
ONE_THIRD
Constant value equal to 1/3. 
 | 
static double | 
Q_17_OVER_315
Constant value equal to 17/215. 
 | 
static double | 
THREE_OVER_40
Constant value equal to 3/40. 
 | 
static double | 
TWO_OVER_15
Constant value equal to 2/15. 
 | 
| Constructor and Description | 
|---|
TaylorSeries()  | 
| Modifier and Type | Method and Description | 
|---|---|
static double | 
asinO1(double x)  | 
static double | 
asinO3(double x)  | 
static double | 
asinO5(double x)  | 
static double | 
asinO7(double x)  | 
static double | 
cosO0(double a)
Returns the Taylor serie of the trigonometric cosine around a = 0 at the 0 order (constant). 
 | 
static double | 
cosO2(double a)
Returns the Taylor serie of the trigonometric cosine around a = 0 at the order of the 2nd degree. 
 | 
static double | 
cosO4(double a)
Returns the Taylor serie of the trigonometric cosine around a = 0 at the order of the 4th degree. 
 | 
static double | 
cosO6(double a)
Returns the Taylor serie of the trigonometric cosine around a = 0 at the order of the 6th degree. 
 | 
static double | 
sinO1(double a)
Returns the Taylor serie of the trigonometric sine around a = 0 at the order of the 1st degree. 
 | 
static double | 
sinO3(double a)
Returns the Taylor serie of the trigonometric sine around a = 0 at the order of the 3rd degree. 
 | 
static double | 
sinO5(double a)
Returns the Taylor serie of the trigonometric sine around a = 0 at the order of the 5th degree. 
 | 
static double | 
sinO7(double a)
Returns the Taylor serie of the trigonometric sine around a = 0 at the order of the 7th degree. 
 | 
static double | 
tanO1(double a)
Returns the Taylor serie of the trigonometric tan around a = 0 at the order of the 1st degree. 
 | 
static double | 
tanO3(double a)
Returns the Taylor serie of the trigonometric tan around a = 0 at the order of the 3rd degree. 
 | 
static double | 
tanO5(double a)
Returns the Taylor serie of the trigonometric tan around a = 0 at the order of the 5th degree. 
 | 
static double | 
tanO7(double a)
Returns the Taylor serie of the trigonometric tan around a = 0 at the order of the 7th degree. 
 | 
public static final double HALF
public static final double ONE_THIRD
public static final double ONE_SIXTH
public static final double ONE_OVER_24
public static final double ONE_OVER_120
public static final double ONE_OVER_720
public static final double ONE_OVER_5040
public static final double TWO_OVER_15
public static final double THREE_OVER_40
public static final double FIVE_OVER_112
public static final double Q_17_OVER_315
public static final double cosO0(double a)
1.
 The error on this approximation is no more than |x|^2 / 2,  i.e. ~5e-17 if x = 1e-8.
 We recall that the erro due to numercial approximation is 1e-16.a - angle, in radianspublic static final double cosO2(double a)
1 - x^2/2.
 The error on this approximation is no more than |x|^4 / 4!,  i.e. ~4e-18 if x = 1e-4.a - angle, in radianspublic static final double cosO4(double a)
1 - x^2/2 + x^4/4!.
 The error on this approximation is no more than |x|^6 / 6!,  i.e. ~1.3e-21 if x = 1e-3.a - angle, in radianspublic static final double cosO6(double a)
1 - x^2/2 + x^4/4! - x^6/6!.
 The error on this approximation is no more than |x|^8 / 8!,  i.e. ~1.7e-20 if x = 1e-2.a - angle, in radianspublic static final double sinO1(double a)
x.
 The error on this approximation is no more than |x|^3 / 3!,  i.e. ~1.6e-19 if x = 1e-6.a - angle, in radianspublic static final double sinO3(double a)
x - x^3/3!.
 The error on this approximation is no more than |x|^5 / 120, i.e. ~8.3e-18 if x = 1e-3.a - angle, in radianspublic static final double sinO5(double a)
x - x^3/3! + x^5/5!.
 The error on this approximation is no more than |x|^7 / 7!, i.e. ~2e-18 if x = 1e-2.a - angle, in radianspublic static final double sinO7(double a)
x - x^3/3! + x^5/5! - x^7/7!.
 The error on this approximation is no more than |x|^9 / 9!, i.e. ~2.8e-15 if x = 1e-1.a - angle, in radianspublic static final double tanO1(double a)
x.
 The error on this approximation is no more than |x|^3 / 3, i.e. ~4e-19 if x = 1e-6.a - angle, in radianspublic static final double tanO3(double a)
x + x^3/3.
 The error on this approximation is no more than 2*|x|^5 / 15, i.e. ~1.3e-21 if x = 1e-4.a - angle, in radianspublic static final double tanO5(double a)
x + x^3/3 + 2x^5/15.
 The error on this approximation is no more than 17|x|^7 / 315, i.e. ~5.4e-23 if x = 1e-3.a - angle, in radianspublic static final double tanO7(double a)
x + x^3/3 + 2x^5/15 + 17x^7/315.
 The error on this approximation is no more than 62|x|^9 / 2835, i.e. ~2.2e-20 if x = 1e-2.a - angle, in radianspublic static final double asinO1(double x)
public static final double asinO3(double x)
public static final double asinO5(double x)
public static final double asinO7(double x)
Copyright © 2018 F.-X. Pineau, CDS, Observatoire Astronomique de Strasbourg, Universite de Strasbourg, CNRS. All Rights Reserved.